Stabilization of a flexible pipe conveying fluid with an active boundary control method

Author:

Yu Beiming1ORCID,Yabuno Hiroshi1,Yamashita Kiyotaka2

Affiliation:

1. University of Tsukuba, Japan

2. Fukui University of Technology, Japan

Abstract

A method of stabilizing the self-excited oscillation of a cantilevered pipe conveying fluid because of non–self-adjointness is proposed theoretically and experimentally. Complex eigenvalues denoting the natural frequency and damping of the system vary with an increase in the flow velocity. When the flow velocity exceeds a critical value, the flow-generated damping becomes negative and the pipe is dynamically destabilized. The complex eigenvalues with respect to flow velocity are affected by boundary conditions. We, thus, propose a stabilization control actuating the boundary condition. The stabilization method is carried out by applying a bending moment proportional to the bottom displacement of the pipe. The effect of the proposed control method is shown by investigating the stability for the three lowest modes of the system depending on the feedback gain. It is theoretically clarified that the critical flow velocity is increased by the proposed control method. Furthermore, experiments are performed using a fluid conveying pipe with two piezoactuators at the downstream end. The piezoactuators apply a bending moment at the downstream end of the pipe according to the theoretically proposed method. Experimental results verify that the proposed stabilization method suppresses the self-excited oscillation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3