Dynamics and Global Stability of Beam-based Electrostatic Microactuators

Author:

Najar F.1,Nayfeh A.H.2,Abdel-Rahman E.M.3,Choura S.1,El-Borgi S.1

Affiliation:

1. Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, BP 743, La Marsa 2078, Tunisia

2. Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

3. Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,

Abstract

We investigate the dynamics and global stability of a beam-based electrostatic microactuator, which is modeled as a first-order approximation of a reduced-order model (ROM) derived using the differential quadrature method (DQM). We show that the ROM dynamics is qualitatively similar to that of a higher-order approximation. We simulate the occurrence of dynamic pull-in for excitations near the first primary resonance using the finite difference method (FDM) and long-time integration. Limit-cycle solutions are obtained using the FDM, the generated frequency- and force-response curves exhibit cyclic-fold, saddle-node, and period-doubling bifurcations. We verify that symmetry breaking is not likely to occur because the orbit is already asymmetric. We identify the basin of attraction of bounded motions using various approximation levels. The simulations reveal that the erosion of the basin of attraction depends heavily on the amplitude and frequency of the AC voltage. We show that smoothness of the boundary of the basin of attraction can be lost and replaced by fractal tongues, which dramatically increase the sensitivity of the microbeam to initial conditions. According to these simulations, the locations of the two fixed points are likely to be disturbed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3