Affiliation:
1. Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Iran
Abstract
This article introduces an exact analytical method for free vibration analysis of functionally graded (FG) thin annular sector plates resting on Winkler and Pasternak elastic foundations. The annular sector plate has simply supported radial edges and arbitrary boundary conditions along the circular edges. Based on the displacement field of Kirchhoff plate theory, the governing equations of motion are obtained considering the in-plane displacements and rotary inertia. Using a set of functions, the three coupled governing equations of motion are converted into two decoupled equations. By applying the boundary conditions at inner and outer radii, an eigenvalue problem for finding the natural frequencies is obtained. The nine distinct cases are considered involve all possible combinations of boundary conditions along the circular edges. Accurate non-dimensional frequency is presented for over a wide range of sector angles, some inner to outer radii (aspect ratio) and different powers of functionally graded material. Accurate natural frequencies of FG annular sector plates resting on elastic foundations are presented for the first time and can be used as reference values for numerical analyses.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献