Determination of fundamental coupled torsional—radial frequency of single-walled carbon nanotubes

Author:

Singh Sneha1ORCID

Affiliation:

1. Mechanical and Industrial Engineering Department, Indian Institute of Technology, India

Abstract

Research indicates that single-walled carbon nanotubes have a unique coupled torsional–radial vibration as one of their fundamental modes. Determination of their vibration frequency is required for efficient use of single-walled carbon nanotube in nano-electromechanical systems. However, there is no mathematical expression for these frequencies and their dependence on single-walled carbon nanotube geometry is unknown. This article examines the effect of diameter, length, and chirality on the fundamental coupled torsional–radial vibration frequency of single-walled carbon nanotube using molecular–structural–mechanics–approach, finite element analysis, and regression analyses. Consequently, a first-ever mathematical form of this frequency is derived. The form quickly and accurately predicts these frequencies at 1.5% in-sample, and 7.2% out-sample mean absolute percentage error. single-walled carbon nanotubes’ fundamental coupled torsional–radial vibration frequency is found independent of diameter and inversely proportional to length where the proportionality constant depends on chirality. The coupling of modes and the similarity of the frequency form with cylindrical shell suggest that single-walled carbon nanotube behave like thin shells in these vibrations. A form for effective circumferential shear modulus of single-walled carbon nanotube is also derived. This modulus is found to depend only on the chirality where achiral single-walled carbon nanotubes have higher values than chiral single-walled carbon nanotubes. Proposed mathematical forms can be used for characterization of single-walled carbon nanotubes, determination of single-walled carbon nanotubes’ effective shear modulus, and tuning operational frequency of single-walled carbon nanotube-based nano-electromechanical systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3