Floating Frame of Reference formulation for modeling flexible multi-body systems in premise operational conditions

Author:

Nada Ayman1ORCID,Bishiri Abdullatif2

Affiliation:

1. Benha Faculty of Engineering, Benha University, Egypt

2. College of Engineering, Jazan University, KSA

Abstract

The Floating Frame of Reference (FFR) formulation is a well-established and reliable method for modeling flexible multi-body systems. The FFR formulation has been adopted for dynamic systems that are characterized by large rotations with relatively small deformations. Many scientific papers have pointed out these characteristics with the scrutiny of the simulation results and comparisons with other modeling techniques. However, the FFR is still enclosed in the theoretical aspects and simulation work and faces difficulties when being applied to practical systems. The crucial point in these difficulties centers on coordinate reduction and the associated mapping between nodal and modal coordinates. The process of selecting the necessary modes may be theoretically simple, but the situation is different when applied in a real operational environment. The strategy developed in this work combines the Operational Modal Analysis, specifically the Frequency Domain Decomposition (FDD) approach, and the FFR formulation to build a suitable model of practical multi-body systems. The output model has been validated experimentally. The results show that the proposed FFR-FDD method can be efficiently used to construct multi-body models for those systems that work in premise operational conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3