Galerkin–Ivanov transformation for nonsmooth modeling of vibro-impacts in continuous structures

Author:

Samukham Surya1ORCID,Khaderi S. N.1,Vyasarayani C. P.1ORCID

Affiliation:

1. Department of Mechnical and Aerospace Engineering, Indian Institute of Technology Hyderabad, India

Abstract

This work deals with the modeling of nonsmooth vibro-impact motion of a continuous structure against a rigid distributed obstacle. Galerkin’s approach is used to approximate the solutions of the governing partial differential equations of the structure, which results in a system of ordinary differential equations. When these ordinary differential equations are subjected to unilateral constraints and velocity jump conditions, one must use an event detection algorithm to calculate the time of impact accurately. Event detection in the presence of multiple simultaneous impacts is a computationally demanding task. Ivanov (Ivanov A 1993 “Analytical methods in the theory of vibro-impact systems”. Journal of Applied Mathematics and Mechanics 57(2): pp. 221–236.) proposed a nonsmooth transformation for a vibro-impacting multi-degree-of-freedom system subjected to a single unilateral constraint. This transformation eliminates the unilateral constraints from the problem and, therefore, no event detection is required during numerical integration. This nonsmooth transformation leads to sign function nonlinearities in the equations of motion. However, they can be easily accounted for during numerical integration. Ivanov used his transformation to make analytical calculations for the stability and bifurcations of vibro-impacting motions; however, he did not explore its application for simulating distributed collisions in spatially continuous structures. We adopt Ivanov’s transformation to deal with multiple unilateral constraints in spatially continuous structures. Also, imposing the velocity jump conditions exactly in the modal coordinates is nontrivial and challenging. Therefore, in this work, we use a modal-physical transformation to convert the system from modal to physical coordinates on a spatially discretized grid. We then apply Ivanov’s transformation on the physical system to simulate the vibro-impact motion of the structure. The developed method is demonstrated by modeling the distributed collision of a nonlinear string against a rigid distributed surface. For validation, we compare our results with the well-known penalty approach.

Funder

Department of Science and Technology India

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3