Acoustic metamaterial composed of zigzag channel and micro-perforated plate for enhanced low-frequency sound absorption

Author:

Zhang Tongtao1ORCID,Wu Fengmin1ORCID,Bai Chungeng1ORCID,An Kexin1ORCID,Wang Junjun1,Yang Bin2,Zhang Dong13

Affiliation:

1. Department of Applied Physics, School of Science, Harbin University of Science and Technology, Harbin, China

2. Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China

3. Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China

Abstract

We propose the theoretical design and experimental authentication of an ultrathin sound absorber consisting of a perforated plate and a back cavity with zigzag channels for realizing high-efficiency and broadband absorption of low-frequency sound. The dependence of the absorption performance on the structural parameters is analyzed, which suggests the possibility of decreasing the peak frequency of resonance noise absorption with equal compactness of device. Based on this, we propose a hybrid design composed of multiple structures with different parameters to effectively expand the working bandwidth, and propose to further optimize the low-frequency absorption performance by adjusting the inclined partitions in the zigzag channel. The experimental results show that nearly 100% sound absorption is obtained at the resonance frequency (< 500 Hz) with an absorber 30 times thinner than the wavelength. We envision our designed sound absorber with deep-subwavelength size, broadband functionality, and easy fabrication to find wide applications in noise control engineering.

Funder

Natural Science Foundation of Heilongjiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3