Modal self-excitation in a class of mechanical systems by nonlinear displacement feedback

Author:

Malas Anindya1,Chatterjee Shyamal1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, India

Abstract

Many devices and processes utilize self-excited oscillation to enhance performance. Recently, much research work has been devoted to the induction of self-excited oscillation in mechanical systems by nonlinear feedback. The present paper investigates the efficacy of a displacement feedback technique in generating self-excited oscillation at the desired mode(s) in a multiple degrees-of-freedom mechanical system. The controller couples the system with a bank of second-order filters and generates the required control force as a nonlinear function of the filter output. The describing function method theoretically explores the dynamics of the system with the control law. The control cost of the controller is studied for the proper choice of the filter parameters. The analytical results are substantiated by the numerical simulation results. The present study reveals that the proposed control laws, if used in an appropriate way, can generate self-excited oscillation in the system at the desired mode(s).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3