Affiliation:
1. Institute of Launch Dynamics, Nanjing University of Science and Technology, P.R. China
Abstract
Rocket launcher system, as a special launcher placed on tactical vehicles, is a very complex mechanical system with characteristics of strong shock and vibration. In order to improve position accuracy, as well as reduce vibration, this paper creates a nonlinear dynamics model of the launcher system by using a new version of the transfer matrix method for multibody systems. The overall transfer equation of the nonlinear model is deduced. Combining with general kinematics equations of the rocket, the system launch dynamics are simulated and compared with experiments to verify the correctness of the model. On this basis, a backpropagation neural network proportional–integral–derivative adaptive control system is designed to improve servo control of the launcher. Then, the effectiveness of this method is verified by comparing with the traditional proportional–integral–derivative control method. Simulated results show that the backpropagation neural network proportional–integral–derivative control system makes the azimuth and elevation angles reach the target values smoothly and quickly, with higher accuracy. The results prove that the proposed method prominently reduces vibrations of the launcher, by adjusting the control parameters online according to the operation state of the system, presenting a better stability and robustness.
Funder
Science Challenge Project
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献