Controlling chaos and codimension-two bifurcation in a discrete fractional-order Brusselator model

Author:

Din Qamar1ORCID

Affiliation:

1. Department of Mathematics, University of Poonch Rawalakot, Pakistan

Abstract

This paper explores the qualitative behavior of a discrete fractional–order Brusselator model. We analyze the local dynamics of the model around its fixed point and determine its topological classification. We perform the bifurcation analysis for both codimension-one and codimension-two cases to examine the system behavior near critical parameter values. Using normal form theory and center manifold theorem (CMT), we prove that the model exhibits period-doubling bifurcation around its interior fixed point. We also study the existence and direction of Neimark–Sacker bifurcation using normal form theory. For codimension-two bifurcation, we show that the model undergoes 1:2, 1:3, and 1:4 resonances by applying normal form theory and suitable affine transformations. The system displays a rich variety of bifurcations, including quasi–periodicity, periodic orbits, chaotic behavior, and resonance bifurcation. Furthermore, the existence of chaos is discussed in the sense of Marotto, and a novel chaos control method is proposed for discrete Brusselator model using an extended pole–placement approach. This modified approach is more suitable for codimension-two bifurcation situations. Numerical simulations are used to illustrate the theoretical discussion.

Funder

Higher Education Commission (HEC) Pakistan

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3