Dynamic modeling of configuration-controllable phononic crystal using NARX neural networks

Author:

Li Nan1ORCID,Bai Changqing1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures/Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, Xi’an Jiaotong University, Xi’an, China

Abstract

Configuration-controllable phononic crystals (CCPCs) have broad application prospects in engineering because of their adjustable vibration-reduction properties. Owing to the complicated constitutive relationship and nonlinear geometric deformation, it is difficult to accurately predict the dynamic characteristics of CCPCs using the finite element method (FEM) or theoretical methods. In this study, we employed a nonlinear autoregressive with exogenous input (NARX) artificial neural network (ANN) to identify the dynamic model of the CCPC under an impact load, using data from over 100 experiments and numerous accumulated samples. The corresponding experimental data for the CCPC were used to train the ANN and determine the rational ANN model. The identification results indicate that appropriate number of neurons and time-delay orders can effectively reduce the identification errors. Compared with the response predicted by the FEM, the identification model can describe the nonlinear characteristics emerging from phononic crystal (PC) experiments more accurately. This study provides an efficient and accurate online identification approach for PC-modeling.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3