Output-feedback control of linear time-varying and nonlinear systems using the forward propagating Riccati equation

Author:

Prach Anna1,Tekinalp Ozan2,Bernstein Dennis S3

Affiliation:

1. Singapore institute of Neurotechnology, National University of Singapore, Singapore

2. Department of Aerospace Engineering, Middle East Technical University, Ankara, Turkey

3. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

For output-feedback control of linear time-varying (LTV) and nonlinear systems, this paper focuses on control based on the forward propagating Riccati equation (FPRE). FPRE control uses dual difference (or differential) Riccati equations that are solved forward in time. Unlike the standard regulator Riccati equation, which propagates backward in time, forward propagation facilitates output-feedback control of both LTV and nonlinear systems expressed in terms of a state-dependent coefficient (SDC). To investigate the strengths and weaknesses of this approach, this paper considers several nonlinear systems under full-state-feedback and output-feedback control. The internal model principle is used to follow and reject step, ramp, and harmonic commands and disturbances. The Mathieu equation, Van der Pol oscillator, rotational-translational actuator, and ball and beam are considered. All examples are considered in discrete time in order to remove the effect of integration accuracy. The performance of FPRE is investigated numerically by considering the effect of state and control weightings, the initial conditions of the difference Riccati equations, the domain of attraction, and the choice of SDC.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3