Mittag–Leffler stability and finite-time control for a fractional-order hydraulic turbine governing system with mechanical time delay: An linear matrix inequalitie approach

Author:

Chen Peng12,Wang Bin12ORCID,Tian Yuqiang1,Yang Ying1

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, P.R. China

2. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, P.R. China

Abstract

This article mainly studies the Mittag–Leffler stability and finite-time control of a time-delay fractional-order hydraulic turbine governing system. First, properties of the Riemann–Liouville derivative and some important lemmas are introduced. Second, considering the mechanical time delay of the main servomotor, the mathematical model of a fractional-order hydraulic turbine governing system with mechanical time delay is presented. Then, based on Mittag–Leffler stability theorem, a suitable sliding surface and finite-time controller are designed for the hydraulic turbine governing system. The system stability is confirmed, and the stability condition is given in the form of linear matrix inequalities. Finally, the traditional proportional–integral–derivative control method and an existing sliding mode control method are selected to verify the effectiveness and robustness of the proposed method. This study also provides a new approach for the stability analysis of the time-delay fractional-order hydraulic turbine governing system.

Funder

Cyrus Tang Foundation

National Natural Science Foundation of China

Shaanxi Province Science and Technology Plan

the Science and Technology Project of Shaanxi Provincial Water Resources Department

the Shaanxi Province Key Research and Development Plan

Fundamental Research Funds for the Central Universities

Young Scholar Project of Cyrus Tang Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3