Development of an active deflector system for sunroof buffeting noise control

Author:

Kook Hyung-Seok1,Shin Seong-Ryong2,Cho Jungsik2,Ih Kang-Duck2

Affiliation:

1. Department of Automotive Engineering, Kookmin University, Korea

2. Research and Development Division, Hyundai Motor Company, Korea

Abstract

Sunroof buffeting noise is annoying to drivers and passengers. The conventional method for suppressing sunroof buffeting noise is to use passive deflectors. A recent trend has been large sunroof openings, such as panoramic sunroofs, in accordance with customer preferences for a feeling of openness. Since sunroof buffeting noise tends to become louder as the sunroof opening area becomes larger, a conventional passive deflector may not be a solution in this case, and a new effective method for reducing the sunroof buffeting noise is required. Previous work showed that a strong, self-sustained tonal noise, generated from a Helmholtz resonator exposed to a grazing flow, could be significantly reduced by closed-loop control of an active deflector installed near the upstream edge of the resonator opening. The active deflector system is a cascade of a microphone sensor mounted inside the cavity, controller, power amplifier, and deflector mechanism vibrated by a voice coil actuator. Since the acoustic pressure inside the cavity is influenced by the shear layer modified by the active deflector, the active deflector and acoustic response of the cavity form a closed-loop control system. The main objective of the present study is to implement this technology on a real vehicle and evaluate whether the technology can be utilized to suppress sunroof buffeting noise. A simple active deflector system was assembled and installed in a compact-sized hatchback car with a sunroof opening length of 460 mm. The active deflector system was tested both in a wind tunnel and on a proving ground. The test results showed that the active deflector reduced the sunroof buffeting noise by as much as 25 dB. The active deflector was shown to be stable and robust regardless of changes in the wind speed and wind yaw angle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3