Dynamic analysis of mechanical system considering radial and axial clearances in 3D revolute clearance joints

Author:

Bai Zheng Feng1ORCID,Jiang Xin2,Li Ji Yu1,Zhao Ji Jun1,Zhao Yang2

Affiliation:

1. Department of Mechanical Engineering, Harbin Institute of Technology, Weihai, P.R. China

2. Department of Astronautic Engineering, Harbin Institute of Technology, Harbin, P.R. China

Abstract

In the dynamic modeling and simulation of mechanical system with revolute clearance joint, it is usually assumed that the revolute joint is planar joint with radial clearance, but the axial clearance is ignored. In this article, the dynamic responses of a mechanical system considering both radial and axial clearances in 3D revolute clearance joint are investigated using a computational methodology. First, the mathematic model of 3D revolute clearance joint is established considering the radial and axial clearances. The definitions of the radial and axial clearances, the potential contact modes, contact conditions, and contact detection for 3D revolute clearance joint are presented. Furthermore, the normal and tangential contact force models are established to describe the contact phenomenon and determine the contact forces in revolute clearance joints. Finally, two demonstrative application examples are presented to illustrate the dynamic characteristics of mechanical systems considering both radial and axial clearances in revolute clearance joints. A slider-crank mechanism with planar motion and a double pendulum with spatial motion are investigated. Different cases are presented to analyze the dynamic characteristics of a mechanical system considering radial and axial clearances in 3D revolute clearance joints.

Funder

The National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3