Unbalanced vibration suppressing for aerostatic spindle using sliding mode control method and piezoelectric ceramics

Author:

Chen Dongju12ORCID,Zhang Xuan12,Wang Handong12,Pan Ri12,Sun Kun12,Fan Jinwei12,Liang Dong12

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China

2. Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Beijing University of Technology, Beijing, China

Abstract

The lubricating medium of the aerostatic spindle is gas, with relatively low rigidity, which is easy to cause rotor offset and additional vibration under the action of external load, thus affecting the processing accuracy of the spindle. To solve the problem of unbalanced vibration of the spindle, a new type of controllable radial aerostatic bearing is designed by combining piezoelectric ceramics, which use the inverse piezoelectric effect of piezoelectric ceramics to squeeze the air film to produce corresponding control force, and the radial unbalanced vibration of the spindle is suppressed. A bearing–rotor–piezoelectric ceramic coupling model was established, and the control method of feedforward combined with feedback was used to reduce the hysteresis characteristics of piezoelectric ceramics. On this basis, the sliding mode controller of the entire system, and through research, it is found that the sliding mode controller based on the extended observer has the best vibration suppression effect compared with other sliding mode controllers in the article; this research results can improve the rotation accuracy of the spindle system and the machining accuracy of ultra-precision machine tools.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3