Vibration suppression of sprayer boom structure using active torque control and iterative learning. Part I: Modelling and control via simulation

Author:

Tahmasebi Mona1ORCID,Mailah Musa2,Gohari Mohammad3ORCID,Abd Rahman Roslan2

Affiliation:

1. Agricultural Engineering Research Department, Markazi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Iran

2. Department of Applied Mechanics and Design, Universiti Teknologi Malaysia (UTM), Malaysia

3. Faculty of Mechanical Engineering, Arak University of Technology, Iran

Abstract

Since one of the influential factors that affects the spray distribution pattern is the spray boom movements which are mostly induced by soil unevenness, most of the recent sprayers are equipped with suspensions for improving the uniformity of spray application in the field. This paper investigates the suitability of improving the sprayer suspension dynamics performance by employing a robust intelligent control scheme, namely active torque control (ATC) based method in reducing the undesired vibration through a simulation study. The ATC scheme with a self-tuning fuzzy proportional-integral-derivative (PID) (ATC-STF-PID) controller was first designed and simulated. Then an artificial intelligence (AI) method using iterative learning (IL) was embedded and implemented into the ATC loop to compute the estimated inertial parameter of the system; this scheme is known as ATCAIL. Thereafter, the performance of the ATCAIL scheme is later compared to the ATC with artificial neural network (ATCANN), ATC-STF-PID and STF-PID controllers in time and frequency domains. The results of simulation work affirm that ATC-based schemes can improve the system performance of the active rolling suspension in relation to roll vibration suppression. In other words, both the ATCAIL and ATCANN schemes show better responses in comparison to the ATC-STF-PID controller scheme. The results also imply that the ATCAIL scheme is indeed effective in suppressing the vibration of a sprayer boom structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3