Online probabilistic model class selection and joint estimation of structures for post-disaster monitoring

Author:

Amini Tehrani Hamed1ORCID,Bakhshi Ali1ORCID,Yang Tony T.Y.2ORCID

Affiliation:

1. Department of Civil Engineering, Sharif University of Technology, Iran

2. Department of Civil Engineering, University of British Columbia, Canada

Abstract

Online selection of the appropriate model and identifying its parameters based on measured vibrational data are among the challenging issues in dynamic system identification. After a severe earthquake, quick monitoring and assessment of structural health status play a crucial role in effective critical risk management for the building owners and decision-makers. The Bayesian multiple modeling approach is a suitable tool for optimal model class selection, which is used in this article mainly for improving data fitting precision, decreasing dimensions of structural unknown vector through removing unnecessary parameters, detecting the occurrence and type of predominant phenomenon related to degradation and pinching, and finally increasing stability and convergence rate of the used identification algorithm. In this study, a reliable and effective time-domain method is proposed for online probabilistic model class selection and joint estimation of structures using the central difference Kalman filter and Bayesian multiple modeling approach. Also, in contrast to existing studies, the performance and efficiency of the proposed algorithm are investigated in nonlinear system identification with a large number of unknowns. The proposed algorithm is implemented on three moment-frame buildings with 8, 54, and 60 unknowns. In addition, a numerical example is provided to analyze the case in which the exact model is not among the plausible models. To verify the performance of the hybrid identification method, robust simulations with synthetic measurement noises and modeling errors were generated using the Monte Carlo random simulation method. The result shows the method can be used to simultaneously select the optimal model class and identify its unknown states and parameters in an online manner.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3