Affiliation:
1. Depatment of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
Abstract
This paper presents a method for calculating vibrational energy density from experimental data in a uniform beam. The input excitation is a point random force that induces transverse vibration along the beam. Using finite difference method and four accelerometers, both translational and rotational terms of kinetic and potential energy densities are measured. Also, an energy finite element analysis based computer program is developed. The results of the measurements achieved by developed formulation are compared with those of energy finite element analysis results. It is found that there is a fair agreement between them at relatively lower frequencies. But, in high frequencies, the difference between analytical and experimental results increases which stems from occurrence of errors in calculation of potential energy density. Finally, a comparison between kinetic and potential terms of the energy density is done. It is concluded that an efficient and very simple measurement procedure can be used based on kinetic energy measurement only.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献