Unbalance identification for a practical turbofan engine using augmented Kalman filter improved with the convergence criterion

Author:

Zhou Liang12ORCID,Zhang Dayi12ORCID,He Tian3ORCID,Wang Hong4

Affiliation:

1. School of Energy and Power Engineering, Beihang University, Beijing, P.R. China

2. Beijing Key Laboratory of Aero-Engine Structure and Strength, Beihang University, Beijing, P.R. China

3. School of Transportation Science and Engineering, Beihang University, Beijing, P.R. China

4. Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing, P.R. China

Abstract

Kalman filter has emerged as a powerful tool for unbalance identification in rotating machinery. Recently, the augmented Kalman filter combined with the finite element model has grown up and projects its potential for complex rotor systems. This paper investigates the application of the augmented Kalman filter (AKF) to a practical turbofan engine. The current study reveals that using steady-state responses as measurements can cause fluctuation in the estimated results, even divergence for some cases, while the available signals in practice are steady-state responses generally. To the authors' knowledge, this practical problem is revealed for the first time. To address the problem, the convergence criterion is employed to improve the AKF and formulates the adaptive fading augmented Kalman filter (AFAKF) proposed in this paper. Results indicate that the increase of the amplification factor, the insufficient measurement points, and the complexity of the dynamic model can all lead to the deterioration of the estimated unbalance. The proposed AFAKF method shows favorable convergence and can achieve accurate estimation with less than 5% relative errors, and the superiority over AKF in computation cost is also observed.

Funder

The Innovation Centre for Advanced Aviation Power

National Natural Science Foundation of China

The major projects of aero-engines and gas turbines

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3