Use of active synthesis in vibration reduction using an example of a four-storey building

Author:

Dymarek Andrzej1ORCID,Dzitkowski Tomasz1,Herbuś Krzysztof1,Ociepka Piotr1,Sękala Agnieszka1

Affiliation:

1. Institute of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Poland

Abstract

The article presents a method of active vibration reduction of vibrating mechanical systems. This method is based on the properties of positive rational functions, which in the case of discrete dynamical systems correspond to the characteristic function describing such systems. The method formalized uses methods for decomposing positive rational functions. The advantage of this approach is taking into account the analytical form of a characteristic function of the system being tested and the vibration-reducing force, as well as the conditions that the system should meet in the event of an active vibration-reducing force. In addition, in the proposed method, the desired dynamic properties of the system and the vibration-reducing force can be defined in such a way that the determined parameters of the active force affect all forms of the natural vibrations of the examined system. Based on the formalized methodology, the force reducing the vibrations of a four-storey frame to the desired displacement amplitude was determined. The impact of the place of application of the specific active force on the reduction of vibration of the tested object was also taken into account. The vibrations of the tested structure’s model were caused by kinematic excitation with a harmonic course and an amplitude corresponding to an earthquake of a magnitude of 5 on the Richter scale. To verify the determined force reducing the vibrations of the object and to create a visualisation of the analysed phenomenon, a dynamic analysis of the building structure was carried out using PLM Siemens NX 12 software.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3