Wheel nominal rolling radius difference on hunting stability of railway vehicle system under a speed-dependent nonlinear creep model

Author:

Cheng Yung-Chang1,Wu Po-Hsien1

Affiliation:

1. Department of Mechanical and Automation Engineering, National Kaohsiung First University of Science and Technology, Taiwan

Abstract

This study presents the hunting stability of a railway vehicle system in a speed-dependent nonlinear creep model with varying wheel conicity and nominal rolling radius. Integrating Kalker’s linear theory, Hertz contact theory, and the heuristic nonlinear creep model, the speed-dependent nonlinear creep model, including the semi-axis lengths and nonconstant creep coefficients with the varying vehicle speed, is investigated. Modeling and dynamic analysis are performed in the 28 degrees-of-freedom railway vehicle system. Lyapunov’s indirect method is used to calculate critical hunting speed of a railway vehicle system. The effects of suspension system parameters, various wheel conicities, and nominal rolling radii on the hunting stability are illustrated and compared. Critical hunting speeds calculated for the original design wheel are consistently better than those obtained from worn wheels with differences in wheel conicity and wheel rolling radius. Notably, critical hunting speeds calculated for a softer stiffness and damping decrease as wheel nominal rolling radius difference increases. Furthermore, the critical hunting speed calculated by the harder stiffness and damping increase as wheel nominal rolling radius difference increases. Analysis of hunting stability further shows that vehicle running speed must be considered when the wheel nominal rolling radius is less than the origin design wheel radius. Therefore, the effects of various wheel nominal rolling radius differences on hunting stability is an important research issue.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3