Modal testing and finite element model calibration of in-filled reinforce concrete frames

Author:

Arslan Mehmet E1,Durmuş Ahmet1

Affiliation:

1. Department of Civil Engineering, Karadeniz Technical University, Turkey

Abstract

In this study, modal testing and finite element model calibration of in-filled reinforced concrete (RC) frames are studied. For this purpose a full-scaled, one bay and one-story RC frame is produced and tested for plane and brick in-filled conditions. Dynamic characteristics, such as natural frequencies, mode shapes and damping ratios, of plane and in-filled RC frames are determined using the Operational Modal Analyses method under ambient vibration. The RC frame is vibrated by natural excitations with small-impact effects and the response signals are measured using sensitive accelerometers during ambient vibration tests. Measurements of time-frequency range and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, enhanced frequency domain decomposition and stochastic subspace identification methods are employed. Analytical modal analysis is performed on a two-dimensional finite element model of the frames using SAP2000 software to provide analytical frequencies and mode shapes. The results of ambient vibration tests show that dynamic characteristics change significantly depending on the existence of an in-fill wall. The first five natural frequencies are obtained experimentally between 16.64 and 179.20 Hz, and 63.56 and 226.12 Hz for plane and brick in-filled, respectively. Dynamic characteristics obtained by analytical and experimental methods are compared with each other and the finite element model of the frames is updated by changing some uncertain modeling parameters, such as material properties and boundary conditions, to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 39% to 8% and a good agreement is found between analytical and experimental dynamic characteristics after finite element model updating. This result shows the importance of finite element model updating to reflect the current behavior of the structures. In addition, it is seen that material properties are more effective parameters in the finite element model updating of the plane frame. However, for the brick in-filled frame, changes in boundary conditions determine the model updating process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3