Theoretical study of the vibration characteristic in geological layer under blasting excavation of metro tunnel

Author:

Zhang Zhen123ORCID,Yao Yingkang12,Jiang Nan34,Xie Quanmin12,Wang Junhao12ORCID

Affiliation:

1. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, China

2. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan, China

3. Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Wuhan, China

4. Faculty of Engineering, China University of Geosciences, Wuhan, China

Abstract

The stress waves generated by tunnel blasting in urban rock layers can affect the safety of adjacent buried structures in the overlying geological layers. To ensure the safety of buried structures, it is crucial to understand the blasting vibration characteristics in the geological layers. In this paper, the analytical solution for the vibration velocity response in geological layer subjected to P-wave is derived. Based on a specific tunnel blasting excavation project, the influence of incident wave frequency, layer thickness, and incidence angle on the vibration velocity distribution along the depth direction are investigated. Results show that the vibration velocity in the upper soil layer does not strictly attenuate with increasing distance from the blasting source but rather exhibits a fluctuating trend. As the frequency of the incident wave increases, the normalized vibration velocity on the ground surface exhibits a periodic decreasing trend, and the distance between the initial fluctuation point and the ground surface decreases. The normalized vibration velocity in the soil layer does not exhibit a monotonic decrease as the soil thickness increases. With an increase in the incident angle, a general declining pattern is observed in the normalized vibration velocity along the depth direction.

Funder

Knowledge Innovation Program of Wuhan

Open Fund of Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3