Dynamic modeling and analysis of an elastic mechanism with a nonlinear damping model

Author:

Yuan Da-Ning1

Affiliation:

1. Mechanical and Precision Instrument Engineering Department, Xi’an University of Technology, Xi’an, China

Abstract

Dynamic modeling and simulation of a mechanical system with nonlinear strain-frequency-dependent damping are carried out in this paper. First, methods of nonlinear strain-frequency-dependent damping are described, which extracts nonlinear damping information of a damping alloy specimen from the free decay signal by means of the moving autoregressive model method. Second, the viscoelastic theory is introduced to describe the strain-frequency-dependent characteristics of damping more accurately, a viscoelastic three parameter structural damping constitution model is developed whose parameters are identified from the test data by means of an optimization algorithm. The finite element dynamic equations for strain-frequency-dependent damping are derived through the established three parameters constitution. Thirdly, the established element dynamic equations are assembled into the system dynamic equations of an elastic linkage mechanism by means of the kineto-elastodynamic theory, and a closed-form numerical algorithm is constructed in order to solve the high-order differential equations with time-varying coefficients. Lastly, a dynamic simulation example of a four-bar elastic linkage mechanism with damping alloy components is given. It is shown that the elastic vibration can be significantly reduced with the components replaced by damping alloy parts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3