Affiliation:
1. Department of Civil Engineering, Indian Institute of Technology Roorkee, India
Abstract
A C0 finite element (FE) formulation based on higher order shear deformation theory (HSDT) is developed for free vibration analysis of composite skew cylindrical shells. The problem of C1 continuity associated with the HSDT has been overcome quite efficiently in the present FE model. The curved isoparametric element used in the model consists of nine nodes with seven nodal unknowns per node. Use of shear correction factor is avoided by assuming a realistic parabolic variation of transverse shear strain through the shell thickness. The transverse shear stresses are taken as zero at the shell top and bottom. Sander’s approximations are considered in the FE formulation to include the effect of three curvature terms in the strain components of composite shells. Since there is no result available in the literature on the problem of skew composite cylindrical shell based on HSDT, the present results are validated with some results available on composite plates/shells. Many new results are presented on free vibration response of laminated composite skew cylindrical shells considering different geometry, boundary conditions, ply orientation and skew angles.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献