Optimization of multicomponent signals entered to the system using estimation of instantaneous frequency

Author:

Daneshvar Milad1ORCID,Salehi Pouria1ORCID

Affiliation:

1. Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Iran

Abstract

The frequency signal displays are not efficient for analyzing nonstationary signals because of their inability to represent frequency changes over time. In fact, because most of the signals are real, nonstationary, and time varying, analyzing the signals in the time–frequency domain to estimate the instantaneous frequency of a signal is inevitable. The methods of estimating the instantaneous frequency of the multicomponent signals are divided into three groups, which include the methods using signal phase derivatives that are sensitive to noise, methods that calculate the number of zero points of the signal and consider the signal frequency equal to half the frequency of the zero points and are suitable for signals that can be imagined as stationary, and methods based on time–frequency distributions and distributions such as Wigner for instantaneous frequency calculations and more for instantaneous frequency calculations on nonstationary noise signals that exhibit varied time–frequency distributions. In this article, a new hybrid algorithm is used to evaluate different distribution criteria and comparing their performance in investigating one or more features of time–frequency distributions, such as resolution and energy concentration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3