Affiliation:
1. Department of Civil Engineering, Southwest Jiaotong University, China
2. Wind Engineering Key Laboratory of Sichuan Province, China
Abstract
Flutter control is necessary in the design of a long-span bridge. With the help of active flaps, flutter control can suppress flutter vibration and increase aerodynamic stability. This study aims to build a theoretical framework for active flutter control using a system consisting of a streamlined box girder with adjacently mounted active flaps (noted as a “deck–flap system”). An adaptive expression was proposed for the system’s self-excited forces, and an identification method was established for obtaining the system flutter derivatives in consideration of the bluff characteristics of the bridge deck and the aerodynamic interactions between the bridge girder and flaps. Then, the suboptimal control algorithm was implemented into the deck–flap system to simultaneously stabilize the divergent oscillation at the designed wind speed. Based on the proposed approach, numerical simulations were conducted to investigate the system flutter derivatives and the effectiveness of the control law. A comparison between the critical speeds of the two-dimensional flutter analysis and a fluid–structure interaction simulation showed a satisfactory performance from the theoretical model and the reliability of the identification method. The vibrations of the deck–flap system were successfully suppressed by the controlled motions of the active flaps under the application of the suboptimal control algorithm. This study provides a reliable framework for conducting an analysis of active control for bridge flutter and for significantly increasing the flutter stability of a deck–flap system.
Funder
National Key Basic Research Program of China
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献