Free vibration analysis of rectangular and annular Mindlin plates with undamaged and damaged boundaries by the spectral collocation method

Author:

Sari Ma’en S1,Butcher Eric A1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, New Mexico State University, USA

Abstract

The objective of this paper is the development of a new numerical technique for the free vibration analysis of isotropic rectangular and annular Mindlin plates with damaged boundaries. For this purpose, the Chebyshev collocation method is applied to obtain the natural frequencies of Mindlin plates with damaged clamped boundary conditions, where the governing equations and boundary conditions are discretized by the presented method and put into matrix vector form. The damaged boundaries are represented by distributed translational and torsional springs. In the present study the boundary conditions are coupled with the governing equation to obtain the eigenvalue problem. Convergence studies are carried out to determine the sufficient number of grid points used. First, the results obtained for the undamaged plates are verified with previous results in the literature. Subsequently, the results obtained for the damaged Mindlin plate indicate the behavior of the natural vibration frequencies with respect to the severity of the damaged boundary. This analysis can lead to an efficient technique for structural health monitoring of structures in which joint or boundary damage plays a significant role in the dynamic characteristics. The results obtained from the Chebychev collocation solutions are seen to be in excellent agreement with those presented in the literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3