An adaptive higher order finite element model and modal energy for the vibration of a traveling string

Author:

Chen Enwei1ORCID,Li Mengbo1,Ferguson Neil2,Lu Yimin1

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, People's Republic of China

2. Institute of Sound and Vibration Research, University of Southampton, UK

Abstract

A nonlinear equation describing the transverse vibration of an axially traveling string with constant and time-varying length is obtained by developing a new finite element model described by quadratic shape functions. A novel nonlinear coordinate transform is introduced with regard to its nonlinear terms. Subsequently, a new hybrid Newmark-beta/time varying degree of freedom method, which can adjust the element number automatically according to the change of string length, is proposed to improve accuracy. The proposed method as well as normal numerical methods are compared with an analytical solution. Results show that the proposed method is in good agreement with the Newmark-beta method for the case of small variations in string length, whilst it is superior in accuracy to the latter in the case of large length variations. Complex mode theory is adopted firstly to obtain the modal components as well as subsequently the modal energy for a traveling string. A phenomenon is observed where the free vibration energy leaks from one mode to the others in a traveling string. The higher the speed of translation and the modal order, the more energy that is leaked into the modes close to the initially excited mode.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3