On the impact process and stress field of functionally graded graphene reinforced composite pipes with a viscoelastic interlayer

Author:

Li Lizhi12,Nie Lu3,Ren Yiru12ORCID,Jin Qiduo12

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, China

2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan, China

3. Beijing Institute of Space Long March Vehicle, China Academy of Launch Vehicle Technology, Beijing, China

Abstract

In the paper, impact process of the fluid-conveying pipes composed of graphene-reinforced composite layers and a viscoelastic interlayer is studied. The bending stress field, midspan displacement and contact force are focused on. Based on the theory of high-order displacement field, the governing equations are derived through the Hamilton variational principle. To obtain the approximate solution for the impact dynamics of pipes, the Galerkin method is extended to expand the generalized displacements into the schemes of triangular series. Further, by utilizing the orthogonality of the trigonometric series, the differential equations of various orders for impact dynamics are established. The fourth-order Runge–Kutta method is introduced to the truncated solutions. Subsequently, the parameter sensitivity of the transient responses in the impact stage is emphatically discussed. It is revealed that the insensitive parameters to contact force and midspan displacement have a great influence on the stress field. Furthermore, the evolution characteristics of the bending normal stress field are highlighted. Numerical results illustrate that the attenuation characteristics of bending stress field are determined by the coupling effects of internal flow and structural features on structural stiffness and damping.

Funder

National Natural Science Foundation of China

Innovative Research Groups of the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3