Finite element analyses of rotor/bearing system using second-order journal bearings stiffness and damping coefficients

Author:

Ahmed Omar1,El-Sayed TA123ORCID,Sayed Hussein1

Affiliation:

1. Faculty of Engineering, Mataria, Department of Mechanical Design, Helwan University, Cairo, Egypt

2. Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, Aberdeen, UK

3. School of Engineering, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt

Abstract

The rotor-bearing system is a crucial component of rotating machinery, such as turbines, pumps, compressors, and turbogenerators, which are widely used in various advanced engineering fields. This work presented a methodology for studying the behavior of an elastic Jeffcott rotor supported by two similar fluid film journal bearings. A finite element model using consistent matrix formulation was employed to simulate the shaft, including the external load, with four degrees of freedom per node. The small perturbation method was used to evaluate the second-order bearing coefficients of a journal bearing of finite length. These coefficients were further integrated with the finite element model to evaluate the dynamic response of the flexible rotors. Moreover, the system equations of motion were presented in dimensional form. The results of the second-order bearing coefficients analysis agreed with nonlinear analysis when the speed was less than the threshold speed, while there was a pronounced difference in second-order analysis when the speed was above the threshold speed. The behavior of the rotor-bearing system was studied using dynamic response and orbit diagrams, revealing that changes in rotational speed significantly affected the rotor’s stability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3