Fuzzy robust control applied to rotor supported by active magnetic bearing

Author:

Carmo Carvalho Felipe1,Fernandes de Oliveira Marcus V1ORCID,Lara-Molina Fabian A2ORCID,Cavalini Aldemir A1,Steffen Valder1

Affiliation:

1. School of Mechanical Engineering, Federal University of Uberlândia, Brazil

2. Department of Mechanical Engineering, Federal University of Technology - Paraná, Brazil

Abstract

The technology associated with active magnetic bearings has been widely used in the last years and can be considered as being one of the most promising solutions for several applications in rotating machinery. Lubricants are not necessary, and high rotation speeds are reached without any relevant heating. Active magnetic bearings are classified as mechatronic systems because they are composed of mechanical and electronic parts that are controlled by using dedicated software. In this context, the present work is devoted to the design of robust controllers applied to supercritical rotors supported by active magnetic bearings. For this aim, numerical and experimental tests were carried out. Different from previous studies reported in the literature, the present contribution proposes a novel design procedure to robustify the neuro-fuzzy controller of a rotor supported by active magnetic bearings based on optimal robust design. This optimal design procedure tunes the robust neuro-fuzzy controller taking into account the optimal balance between vibration attenuation performance and robustness, that is the increase in vibration attenuation implies the reduction in the robustness. The first stage of the controller synthesis is dedicated to the specification of all design requirements. Then, the adaptative neuro-fuzzy controller was obtained, starting from the determination of the plant dominant poles and finally performing the model-based analysis of the system stability and performance. Finally, the vibration control performance and robustness are optimally balanced by using a robust optimization procedure. The behavior of the controller was evaluated by investigating the unbalance response of the rotating system. The obtained results demonstrated the effectiveness of the conveyed approach.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3