A signal compensation-based balance control for the rotary inverted pendulum system

Author:

Li Yue1ORCID,Xin Xin2ORCID,Yan Yuhang1ORCID

Affiliation:

1. School of Automation, Southeast University, and Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, China

2. Faculty of Computer Science and Systems Engineering, Okayama Prefectural University, Okayama 719-1197, Japan

Abstract

In this paper, we study the balance control for the rotary inverted pendulum system with two joints both subject to uncertainty. To facilitate the experiment, we apply a classical energy-based swing-up control, eschewing compensation for the uncertainty. In balance control, we employ a novel approach in the form of a modified signal compensation-based balance control, which models the uncertainty as its previously sampled term and its variation. The signal compensation-based balance control involves three steps. First, for the linearized discrete-time state-space model around the upright equilibrium point, we design the main control signal by using the pole-placement technique. Second, we estimate the discrete-time model of the system by using the least squares identification method, thereby unveiling key points in the identification procedure. The discrete-time model presents the uncertainty as a previously sampled term and its variation. Third, we design two discrete-time compensation signals for the previously sampled term and the variation. By combining the main control signal and the two compensation signals, we formulate the balance control law. We further optimize the signal compensation-based balance control by adding an extra parameter, successfully circumventing the critical stability problem, and analyze the performance of the closed-loop system. Numerical simulation and comparative experiments demonstrate its effectiveness and strong robustness against the uncertainty in frictions and modeling errors of the system.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3