Level-wise driving knowledge induction for embedded automatic train driving system

Author:

Xiao Gang123ORCID,Yang Qinwen123ORCID,Yang Fan4,Liu Tao2,Li Tao5,Feng Jianghua5

Affiliation:

1. Collaborative Innovation Center of Engineering Technology, Jiangxi University of Applied Science, China

2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, China

3. JIANGXI KMAX Industrial Co., Ltd., China

4. School of Vehicle and Mobility, School of Software, Tsinghua University, China

5. CRRC Zhuzhou Institute Co., Ltd., China

Abstract

Automatic driving of trains can significantly reduce the energy cost and enhance the operating efficiency and safety. The automatic train driving system has to be an embedded system that can run onboard with low power, which necessitates an efficient inference model. In this article, a level-wise driving knowledge induction approach is proposed for embedded automatic train driving systems. The coincident driving patterns in the records of drivers with different experience levels suggest the suitability of a driving experience knowledge rule induction approach. We design a two-level learning approach to obtain both the driving experience pattern in fuzzy rule-based knowledge form and the detailed parameters of velocity and gear by regression learning methods. With 8.93% energy consumption reduction compared with average human drivers, the experiments indicate the effectiveness of our approach.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Open Foundation of National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials

Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials

Guangxi University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3