Continuous convolution and nonlinear transformation for multi-shaker non-Gaussian random vibration control

Author:

Zheng Ronghui1ORCID,Lu Yue2,Chen Huaihai1ORCID,Chen Guoping1

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, China

2. Shanghai Radio Equipment Research Institute, China

Abstract

This study proposes a continuous convolution method combined with memoryless nonlinear transformation for multi-input multi-output stationary non-Gaussian random vibration tests. The challenge of the multi-shaker non-Gaussian random vibration test lies in the coupling problems that are manifested in the inherent physical system and in the existence of cross-spectral densities. In the presented method, the independent stationary Gaussian random signals pass through a designed finite impulse response filter with a convolution manipulation first, and then the resulting signals are transformed to the non-Gaussian random signals by the memoryless nonlinear transformation method. The desired drive signals are obtained by the input–output relationship in the frequency domain. The finite impulse response filter is constructed by the frequency sampling technique in which the amplitude characteristics of the filter are determined by the predefined reference power spectral densities. A new monotonic nonlinear transformation function with an approximate kurtosis solution is provided. It only contains one parameter for kurtosis control both in sub-Gaussian and super-Gaussian cases. The memoryless nonlinear transformation is used to maintain the cross-spectral densities, although some distortions are introduced to the power spectra during the transformation process. The inverse system method is used to overcome the coupling problem caused by the inherent physical system. A simulation example and a triaxial vibration test are carried out, and the results indicate the validity and feasibility of the proposed method.

Funder

The Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3