Optimization of the dynamic behavior of vehicle structures by means of passive interface controls

Author:

Huang Xingrong1,Jézéquel Louis1,Besset Sébastien1,Li Lin2

Affiliation:

1. Ecole Centrale de Lyon, France

2. Beihang University, School of Energy and Power Engineering, China

Abstract

As a form of passive control, padding rubber layers onto the most heavily deformed zones of a system can improve the dynamic behavior and the acoustic comfort of a vehicle system. This paper proposes an extensive hybrid modal synthesis method in order to study coupled fluid-structure systems, in retaining a few degrees of freedom. Modal criteria, corresponding to noise transmission paths between substructures in the system, have been derived to characterize the dynamic phenomenon from a modal view. These criteria were then substituted by Kriging interpolation models to avoid prohibitive simulation steps during optimization of the complex system. Once the mathematical models of the investigated modal criteria were established and the multi-objective functions for rubber characteristics defined, an approximate optimal solution leading to superior dynamic performance could be obtained based on a genetic algorithm. The analytical results and numerical experiments conducted have also justified the efficiency of our proposed strategy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3