Vibration bounding of uncertain thin beams by using an extreme value model based on statistical moments

Author:

Seçgin Abdullah1ORCID,Kara Murat1ORCID

Affiliation:

1. Dokuz Eylül University, Department of Mechanical Engineering, Buca, İzmir, Turkey

Abstract

The paper introduces an extreme value model based on statistical moments to predict modal and vibration response bounds for stochastic structures. The approach is applied to a thin beam having two input uncertain parameters: elasticity modulus and specific volume (inverse of the mass density). The input parameters are controllably generated with random shifted normal distributions that have positive statistics. Then the first two statistical moments, mean and standard deviation of natural frequency, and bending vibration displacement are predicted by solving stochastic differential equation of bending vibration of thin beams. Here, the differential equation is solved by utilizing a powerful numerical technique, discrete singular convolution. The accuracies of the discrete singular convolution method and the statistical moment approach are separately ensured with analytical comparisons and experimental and numerical Monte Carlo simulations. These statistical moments are then processed by an extreme value model to predict uncertainty bounds for modal and vibration displacement responses. Predicted bounds are compared with random responses obtained by numerical Monte Carlo simulations. The proposed approach estimates very accurate results with less computation memory and time compared to Monte Carlo solutions. Therefore, the approach proves its efficiency in the use of uncertainty propagation problems governed by partial differential equations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3