Vibration study of a composite pipeline supported on elastic foundation using a transfer matrix method

Author:

Chen Dongyang1ORCID,Yang Junwei1ORCID,Guo Weican2,Liu Yanjia2,Gu Chaojie1ORCID

Affiliation:

1. College of Electrical, Energy and Power Engineering, Yangzhou University, China

2. China Ship Development and Design Center, China

Abstract

Efficient and accurate simulation of the vibration characteristics of a composite pipeline system is the key to the study of the stability and vibration control of the pipeline system. A simulation method called transfer matrix method for multibody systems is used to predict the vibration of a composite pipeline resting on an elastic soil. The transfer matrix of the Euler–Bernoulli beams considering the internal fluid velocity and high-efficiency dynamics model of the pipeline system under the action of the elastic foundation are derived. The simulation results have good agreement with that of the literature and commercial software ANSYS Workbench which verified the accuracy of the numerical model. The simulation results show that with the increase of the velocity, the natural frequencies of each mode of the pipeline decrease continuously. When the first frequency is zero, the pipeline buckling occurs and the velocity reaches the critical velocity; the elastic coefficient and shear coefficient in the foundation coefficient are positively related to the stability of the pipeline system. The damping coefficient is negatively related to pipeline stability.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3