Using supervised kernel entropy component analysis for fault diagnosis of rolling bearings
Author:
Affiliation:
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
2. School of Mechanical & Electrical Engineering, Jiangsu Normal University, Xuzhou, China
Abstract
Publisher
SAGE Publications
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Link
http://journals.sagepub.com/doi/pdf/10.1177/1077546315608724
Reference34 articles.
1. Data representations and generalization error in kernel based learning machines
2. LIBSVM
3. Research on on-line automatic diagnostic technology for scratch defect of rolling element bearings
4. Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming
5. Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis;Measurement;2022-06
2. An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-21
3. A hierarchical deep learning framework for combined rolling bearing fault localization and identification with data fusion;Journal of Vibration and Control;2022-04-26
4. An enhanced fault detection method for centrifugal chillers using kernel density estimation based kernel entropy component analysis;International Journal of Refrigeration;2021-09
5. A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures;Sensors;2020-09-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3