A new model for non-linear vibration of functionally graded porous nano-Beam based on non-local curvature and strain gradient tensors

Author:

Hosseini Seyyed Amirhsoein1ORCID,Hamidi Babak Alizadeh2,Behrouzinia Amirhosein2ORCID

Affiliation:

1. Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University, Qazvin, Iran

2. Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Abstract

In this paper, non-linear free vibration analysis of nano-beam has been studied. The non-local strain gradient theory and curvature tensor are used to show the size effect. The length scale parameter expresses the effect of strain gradient tensor in the non-local strain gradient theory. However, the aim of this article is to show the simultaneous effect of curvature and strain gradient tensors in non-linear vibration of functionally graded porous nano-beams. The effect of curvature tensor is demonstrated with the curvature tensor dependent parameter. Considering non-linear Von Kármán strains and Euler–Bernoulli beam theory, the governing vibrational equation of FG porous nano-beams are derived using Hamilton’s principle in the presence of strain gradient and curvature tensors simultaneously. The non-linear differential equation is extracted by using Galerkin’s method and the non-linear natural frequency of nano-beam is obtained according to Hamiltonian approach. Results represent the simultaneous effects of the length scale and curvature tensor dependent parameters on dimensionless non-linear natural frequencies. Also effects of different parameters such as non-local parameter, length scale parameter, porosity volume index, and power-law index are discussed in the presence and absence of the curvature tensor dependent parameter. Also, the beginning points of stiffness-hardening and stiffness-softening of nano-beam are always constant values in the non-local strain gradient theory, whereas considering the curvature tensor changes the beginning points of stiffness-hardening and stiffness-softening. The results are also compared with previous researches for validation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3