A nonlinear seat suspension with high-static low-dynamic stiffness based on negative stiffness structure for helicopter

Author:

Davoodi Ehsan1,Safarpour Pedram1ORCID,Pourgholi Mahdi2ORCID,Khazaee Mostafa3

Affiliation:

1. Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran

2. Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

3. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

One of the most important issues for the helicopter pilots is the health risk due to the vibration transmitted to the pilot through the seat. In this article, a seat suspension based on negative stiffness structure is presented to decrease the vibration transmitted to the pilot in both vertical and lateral directions without losing the loading capacity of the system. Here, an integrated model of the suspension–cushion–occupant is derived. To generalize the results of system analysis and its usability in other applications, the impact of parameters on the system performance is studied in dimensionless form. Despite coupling between the lateral and vertical directions, the design parameters of the seat suspension are determined in such a way that the system responds simultaneously as a negative stiffness structure in both directions. The system efficiency in vibration damping is assessed by seat effective amplitude transmissibility and transmissibility criteria. In addition, the whole body vibration and impact of the vibration on the pilot body are evaluated using ISO-2631. To verify the system efficiency in more realistic situation, the simulations are performed using the measured vibration data of a Bell-412 helicopter. The results indicate that the vibration amplitude is decreased by about 45% and 48% in the lateral and vertical directions, respectively. The frequency spectrum comparison of the seat and cabin floor reveals 80% reduction of amplitude in fundamental frequency in the vertical direction, whereas it is about 93% in the lateral direction. Furthermore, the level of pilot’s comfort and perception is improved that demonstrates better riding quality and reduced vibration environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Reference25 articles.

1. Adam J (2004) Results of NVG-induced neck strain questionnaire study in CH-146 Griffon aircrew. Technical Report DRDC Toronto TR 2004-153 Defence Research and Development Canada, Toronto Research Centre, Canada.

2. On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets

3. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping

4. Development of Adaptive Seat Mounts for Helicopter Aircrew Body Vibration Reduction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3