Dynamical Integrity and Control of Nonlinear Mechanical Oscillators

Author:

Rega Giuseppe1,Lenci Stefano2

Affiliation:

1. Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza”, via A. Gramsci 53, 00197, Roma, Italy ()

2. Dipartimento di Architettura, Costruzioni e Strutture, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy,

Abstract

The dynamical integrity of nonlinear mechanical oscillators is analyzed in a systematic way extending a previous authors' work. The definition of the safe basin, which is a crucial point that entails choosing what is dynamically acceptable, is critically reviewed. Two different integrity measures are used to quantify the magnitude of the safe basin. When drawn as functions of a varying parameter, they give the so-called erosion profiles, which are the key tool for studying the variation of dynamical integrity. The main focus is on the practically most interesting cases in which the parameter is the excitation amplitude and the integrity reduces as it increases. With the aim of reducing erosion, namely of shifting the erosion profiles toward larger excitation amplitudes, a control method is then applied. It is based on eliminating the homo/heteroclinic bifurcation of the hilltop saddle, which is the triggering event for the considered erosions, by optimally choosing the shape of the periodic excitation. The erosion curves of four different mechanical oscillators, chosen with the aim of covering some main mechanical, dynamical and control features, are numerically constructed and systematically compared with each other. It is found that the control is always able to shift the erosion profiles, although to different extents. Furthermore, its effectiveness may extend above, sometimes well above, the theoretical predictions. Several supplementary specific issues of dynamics and control interest are discussed in detail.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3