Adaptive intelligent terminal sliding mode controller for stabilizing a chaotic plasma torch system

Author:

Rezaie Behrooz1ORCID,Khari Safa1

Affiliation:

1. Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Iran

Abstract

In this article, a novel adaptive intelligent control scheme is proposed to stabilize a chaotic nonlinear system with unknown dynamics in the presence of uncertainties and external disturbances. The proposed control scheme is a combination of terminal sliding mode, adaptive, and neural controllers. Terminal sliding mode control provides appropriate finite-time stability and robustness against uncertainties and external disturbances. A neural controller is used to provide suitable control action to eliminate chattering when the sliding surface is close to zero. For this purpose, a fuzzy module with simple rules is used to change the contributions of two neural and terminal sliding mode controllers, that is, when the sliding surface has a value around zero, the neural controller will take the control of the system to reduce chattering, and when the sliding surface is far from the zero region, the terminal sliding mode controller will control the system. Moreover, to cope with the unknown dynamics of the system, an online adaptive neural network is also used to approximate the unknown dynamics of the system. This hybrid control scheme is capable to decrease the contribution of the terminal sliding mode in the convergence region of the sliding surface which leads to the elimination of chattering. The combination of the several techniques to use the advantages of all the methods makes the proposed hybrid control scheme as an effective and practical scheme. Simulation results on a chaotic plasma torch system indicate the efficiency of the proposed control scheme in chattering elimination, high convergence, and also show the superior performance compared with the existing methods in the presence of disturbance and uncertainty.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3