Medium- and high-frequency analysis of magnetorheological fluid dampers

Author:

Goldasz Janusz1,Alexandridis Alexander A2

Affiliation:

1. BWI Group, Technical Center Krakow, Krakow, Poland

2. Fludicon GmbH, Darmstadt, Germany

Abstract

Controllable dampers based on smart fluids contain internal passages through which the working fluid flows and wherein the controlled pressure drop occurs under the influence of magnetic or electric fields. In this paper, the dynamics of such dampers are analysed through a series of theoretical dynamic models of increasing detail and complexity. The models capture the medium- and high-frequency dynamics of the damping force output of the damper and include the lumped mass of the fluid contained in the internal flow passages, the piston and rod assembly mass, and the compressibility of the fluid and pressurized gas contained within the chambers of the damper. The models are derived in state-space form from which transfer functions and natural frequencies are obtained analytically and then calculated for each of the systems. The results are presented in the form of frequency responses (Bode plots). Finally, the effects of the key geometric parameters of the damper and of the relevant fluid properties on the damper force output dynamics are presented and discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3