Modeling of a six-degree-of-freedom magnetic levitation platform actuated by noncontact Lorentz forces

Author:

Li Jinlin12ORCID,Zeng Sheng1,Guo Qiaoying3,Zhong Shuncong1,Liang Wei1,He Wen4

Affiliation:

1. Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, P. R. China

2. Fujian Forecam Optics Co, Ltd., Fuzhou, P. R. China

3. School of Transportation, Fujian University of Technology, Fuzhou, P. R. China

4. The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, P. R. China

Abstract

In this study, the modeling of a six-degree-of-freedom (DOF) magnetic levitation platform actuated by noncontact Lorentz forces was analyzed. First, an analytic model of the actuator forces was studied, and the magnetic flux density in the working gap of the actuators was established using the Image Method, Ampere molecular hypothesis, and Biot–Savart law. The dynamics model of the floater actuated by the actuators was then built using the Newton–Euler method. Moreover, the double-pendulum chaotic nonlinear system of the hoisted floater was simplified as a single-DOF system, in which the interaction effects between two DOFs were considered. Furthermore, modeling of the platform control system was performed, which included an acceleration measuring unit with six uniaxial accelerometers, a position measuring unit with three two-dimensional PSDs, and a control unit that decouples the six-DOF control. Finally, an experimental setup was built to perform ground tests on the platform. The results verified the platform modeling; translational and rotational positioning accuracies were approximately 5 μm and 40 μrad at the six DOFs, respectively, and the vibrational suppression efficiencies were greater than 90% for low frequency disturbances. Moreover, Kalman estimators and disturbance observers were introduced into the controller to estimate the movement of the floater and observe the direct disturbance. Simulation testing demonstrated a significant improvement in the vibration-suppression performance of the platform.

Funder

Natural Science Foundation of Fujian Province

Special Fund for Research on National Major Research Instruments of National Natural Science Foundation of China

Educational Research Project of Fujian Province Education Department for Young and Middle-aged Teachers

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3