A new type of damper combining eddy current damping with rack and gear

Author:

Li Yafeng1,Li Shouying1ORCID,Wang Jianzhong1,Chen Zhengqing1

Affiliation:

1. Key Laboratory for Wind and Bridge Engineering of Hunan Province, College of Civil Engineering, Hunan University, China

Abstract

A new type of damper combining eddy current damping with rack and gear, which can simultaneously export damping and inertial forces, is proposed. Eddy current damping with rack and gear is supposed to be installed between the building superstructure and foundation to mitigate the seismic response of the building. First, the concept of eddy current damping with rack and gear is introduced in detail and its apparent mass and equivalent damping coefficient are both theoretically investigated. Second, a prototype of eddy current damping with rack and gear is manufactured, and a series of tests on the prototype are carried out to verify its structural parameters. The experimental and theoretical results of the apparent mass of the prototype agree well with each other. The experimental result of the equivalent damping coefficient of the prototype is slightly lower than the numerical results obtained from COMSOL Multiphysics and its maximum relative differences are 11.3% and 13.6% for α = 0° and 45°, respectively. Third, detailed parametric studies on the damping force, including the effects of the thickness of the conductor plate, air gap, and number and location of permanent magnets, are conducted. The results show that the damping force keeps a linear relationship with velocity if it is lower than 0.15 m/s, and with the increase of the velocity, a strong nonlinear relationship between the damping force and the velocity is observed. The available maximum damping force can be increased by decreasing the thickness of the conductor plate and the air gap, increasing the number of permanent magnets. There is an optimal location about the permanent magnets for the available maximum damping force. In addition, the hysteretic curves of the eddy current damping with rack and gear obtained from the test indicate that the ability of energy dissipation is considerable.

Funder

The National Key Research and Development program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3