Influence of corrugated boundary surface and reinforcement of fibre-reinforced layer on propagation of torsional surface wave

Author:

Singh Abhishek Kumar1,Lakshman Anirban1,Chattopadhyay Amares1

Affiliation:

1. Department of Applied Mathematics, Indian School of Mines, Dhanbad, India

Abstract

These days fibre-reinforced materials are frequently used in construction sector for example in dams, bridges etc. Also the earth structure and artificial structure made by human may contain irregularity or corrugation, therefore, propagation of waves and vibrations through these structures gets affected by them. Motivated by these facts the present problem aims to study the propagation of torsional surface wave in a fibre-reinforced layer with corrugated boundary surface overlying an initially stressed transversely isotropic half-space. The closed form of the dispersion equation has been deduced and the notable effect of reinforcement, undulatory parameter of corrugated boundary surfaces of the layer, corrugation parameter of upper and lower boundary surfaces of the layer, initial stress acting in half-space and wave number on the phase velocity of torsional surface wave has been exhibited. The numerical computation along with graphical illustration has been carried out for fibre-reinforced layer of carbon fibre-epoxy resin and T300/5208 graphite/epoxy material for the transversely isotropic half-space. As a special case of the problem, deduced dispersion equation is found in well-agreement with the classical Love wave equation. Comparative study for reinforced and reinforced free layer has been performed and also depicted graphically. Moreover some analysis is made to highlight the important peculiarities of the problem.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3