Waveguides of a Composite Plate by using the Spectral Finite Element Approach

Author:

Barbieri E.1,Cammarano A.2,De Rosa S.2,Franco F.2

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK (

2. ælab - Vibration and Acoustics Laboratory, Dipartimento di Ingegneria Aerospaziale, Universita' degli Studi di Napoli Federico , 80125 Via Claudio, Napoli, Italy

Abstract

This work presents the extension of an existing procedure for evaluating the waveguides and the dispersion curves of a laminate made up of thin orthotropic composite plates arbitrarily oriented. The adopted approach is based on one-dimensional finite-element mesh throughout the thickness. Stiffness and mass matrices available in the literature for isotropic material are reported in full expanded form for the selected problem. The aim of the work is the development of a tool for the simulation of the most common composite materials. The knowledge of the wave characteristics in a plate allows correct sizing of the numerical mesh for the frequency-dependent analysis. The development of new stiffness matrices and the analysis for different heading angles are detailed to take into account the general anisotropic nature of the composite. The procedure concerns a standard polynomial eigenvalue problem in the wavenumber variable and is focused on the evaluation of the dispersion curves for all the propagating waves within the materials. A comparison with an analytical approach is also shown in the results using the classical laminate plate theory (CLPT). However, limits of CLPT are outlined and spectral finite element method can be successfully used to overcome such limitations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3