Time-Domain Simulations of Linear and Nonlinear Aeroelastic Behavior

Author:

Preidikman Sergio1,Mook Dean1

Affiliation:

1. Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksbutg, Virginia 24061, USA

Abstract

A method for simulating unsteady, nonlinear, subsonic aeroelastic behavior of an aircraft wing is described. The flowing air and deforming structure are treated as the elements of a single dynamic system, and all of the governing equations are integrated numerically, simultaneously, and interactively in the time domain. The authors' version of the general nonlinear, unsteady, vortex-lattice method is used to predict the aerodynamic forces; a linear finite-element model of the wing, which is derived from MSC/NASTRAN, is used to predict the deformations of the wing; and the models are coupled in such a way that the structural and aerodynamic grids can be chosen arbitrarily. The deformation of the wing is expressed as an expansion in terms of the linear free-vibration modes obtained from the finite-element model, and the time-dependent coefficients in the expansion serve as the generalized coordinates for the entire dynamic system. A predictor- corrector method is adapted to solve for the generalized coordinates and the flowfield. The results clearly show that when the speed is low, the responses to initial disturbances contain many frequencies and decay, but that the responses become more organized (energy concentrates around a few frequencies) as the speed and/or the angle of attack increases. Finally, at the onset of flutter, all of the modes, after an initial transient period, respond at the same frequency. It appears that the flutter-causing instability is a supercritical Hopf bifurcation. At and above the critical speed, the amplitudes of the responses appear to grow linearly with time initially, but then become limit cycles. The amplitudes of the limit cycles grow as the speed increases, and eventually it appears that the limit cycles experience a secondary supercritical Hopf bifurcation and become unstable; their amplitudes and phases modulate. At this point, the response can be described as motion on a torus.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Aeroelasticity;A Modern Course in Aeroelasticity;2021-10-16

2. Coupled framework for limit-cycle oscillations modeling based on leading-edge vortex shedding;Journal of Fluids and Structures;2020-11

3. Cubic static stall model for nonlinear aeroelastic behavior of high-aspect-ratio flexible composite wings;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-11

4. Aeroelastic oscillations of a pitching flexible wing with structural geometric nonlinearities: Theory and numerical simulation;Journal of Sound and Vibration;2020-10

5. Computational study on aerodynamically coupled piezoelectric harvesters;Journal of Intelligent Material Systems and Structures;2020-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3